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Random networks are widely used to model complex networks and research their properties. In order to get
a good approximation of complex networks encountered in various disciplines of science, the ability to tune
various statistical properties of random networks is very important. In this Brief Report we present an algo-
rithm which is able to construct arbitrarily degree-degree correlated networks with adjustable degree-dependent
clustering. We verify the algorithm by using empirical networks as input and describe additionally a simple
way to fix a degree-dependent clustering function if degree-degree correlations are given.
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I. INTRODUCTION

Modeling empirical networks as random networks is an
important approach in the effort of studying topology and
dynamics of complex networks. The first attempts in con-
structing random networks which exhibit some of the com-
mon features regularly found in empirical networks from
fields as different as biology, social sciences, and technology
have mostly aimed at understanding the origin of scale-free
degree distributions �the degree of a vertex being its number
of connections� and small average distances among vertices
�1,2�. However, it has been found that there are other impor-
tant statistical quantities that profoundly influence the struc-
ture of complex networks and consequently the dynamics
taking place on them. Notably among them are degree-
degree correlations of vertices �3–6� and the abundance of
motifs �7–9�. The smallest and probably most important mo-
tif in undirected graphs is the triangle. Its abundance relative
to all paths of length 3 is called clustering and several mea-
sures have been proposed to quantify it �10�. Some refined
network growing mechanisms which extend the preferential
attachment scheme introduced by Barabási and Albert to
generate “scale-free” graphs �1� that are either correlated or
clustered have been proposed �11–14�. The original Barabási
and Albert algorithm has vanishing correlations in the infi-
nite network limit �3�, and the refined algorithms are re-
stricted in the correlation and clustering patterns they are
able to produce.

Therefore some efforts have recently been undertaken to
overcome these restrictions. For example, the very successful
configuration model �CM� algorithm �15–17�, capable of
generating random networks with an a priori given degree
distribution, has been extended to include either degree-
degree correlations or clustering properties of networks. Ser-
rano and Boguñá presented an algorithm capable of tuning
the degree-dependent clustering coefficient as well as the de-
gree distribution �18�. Additionally, they pointed out that
clustering and degree-degree correlation are deeply en-
twined, the latter limiting the former especially for vertices
of high degree, in particular for disassortative networks
where vertices of high degree are preferentially connected to
vertices of low degree and vice versa. As both properties,
clustering and correlations, are very important for the struc-

ture of a network and strongly related to each other, it is a
natural ansatz to control degree-dependent clustering and the
correlation pattern simultaneously to achieve better null
models of complex networks. In this Brief Report, we pro-
pose an algorithm to construct random networks with given
degree-degree correlation structure and degree-dependent
clustering; it is organized as follows. Section II introduces
the network clustering and correlation measures used. Sec-
tion III describes the algorithm to construct degree-degree
correlated and clustered networks and verifies our scheme by
applying it to empirical networks. Section IV presents a
simple way to create networks with certain correlations and
clustering and shows some results of this approach. In Sec. V
we briefly summarize.

II. NETWORK CORRELATION AND CLUSTERING
MEASURES

Two-point degree-degree correlations can statistically be
described via a degree-degree correlation function P�j ,k�
which is the probability that a randomly chosen edge has
vertices of degrees j and k at its ends. In the case of uncor-
related networks, the correlation function factorizes into
Pu�j ,k�=kP�k�jP�j� / �k�2, where P�k� is the degree distribu-
tion. Thus it appears natural to define a correlation function
f�j ,k� as

f�j,k� =
P�j,k�
Pu�j,k�

. �1�

Values of f�j ,k� different from 1 signal degree-degree corre-
lations in the underlying network. A simpler but more
coarse-grained manner to quantify degree-degree correla-
tions is the average nearest neighbor function knn�k�, describ-
ing the average degree of neighbors of vertices with degree
k. It can be calculated from the conditional probability
P�j �k�= P�j ,k��k� / �kP�k�� as

knn�k� = �
j

jP�j�k� . �2�

A network with an �de-�increasing knn�k� is called �dis-� as-
sortatively correlated.
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Clustering was originally defined by Watts and Strogatz
�2� for the vertex i to be

ci =
2Ti

ki�ki − 1�
, �3�

where Ti denotes the number of triangles passing through
vertex i. Clearly this measure is a three-point dependent
value as the number of triangles requires knowledge over
three connected vertices at the same time. However, it is
common use to average the clustering coefficients ci of all
vertices with the same degree k together, yielding a degree-
dependent clustering coefficient

c�k� =
1

k�k − 1�P�k�N �
i���k�

2Ti, �4�

where ��k� denotes the set of vertices with degree k.
Serrano and Boguñá pointed out that the degree-

dependent clustering c�k� is restricted by degree-degree cor-
relations and is often found to be a decreasing function of k
�18�. They calculated an upper limit ��k� of c�k� dependent
on the degree-degree correlation function P�j ,k�. The main
reasoning is that an edge cannot be part of more triangles
than min�ki ,kj�−1 with ki and kj being the degrees of the
vertices connected by it. This results in a constraint on the
number of triangles Ti for any vertex i,

Ti � �
j

aij�min�ki,kj� − 1� . �5�

Here aij is the network’s adjacency matrix. The upper limit
��k� of the degree-dependent clustering c�k� can then be
written as

��k� 	 1 −
1

k − 1�
j=1

k

�k − j�P�j�k� � c�k� . �6�

This function is always a decreasing function of k and its
slope depends strongly on the average neighbor degree
knn�k�. This means that degree-dependent clustering c�k� can
be written as

c�k� = ceff�k���k� �7�

with 0�ceff�k��1∀k. Thus ceff�k� can be regarded as an
effective degree-dependent clustering, once degree-degree
correlations are fixed.

In the following, we describe an algorithm that is able to
control the two quantities P�j ,k� and c�k� �or ceff�k�� simul-
taneously.

III. ALGORITHM

As already stated, there exists an algorithm to create net-
works with a given degree distribution and a given level of
clustering published by Serrano and Boguñá �18�. We incor-
porated some of their basic ideas into our approach which
additionally fixes the degree-degree correlations besides the
degree-dependent clustering.

The overall scheme of the algorithm to construct a net-
work with N vertices and a given Pd�j ,k� and cd�k�, Pd�j ,k�

being the number of connections between vertices with de-
grees k and j �double that number if k= j�, and cd�k� being
the number of triangle edges constituted by vertices with
degree k, is the following.

We begin by assigning a number of stubs �the target de-
gree� to every vertex according to the degree distribution
Pd�k�, which is calculated from Pd�j ,k� as Pd�k�
=� jPd�j ,k� /k.

The next step is to get a list of degrees of triangle-corners,
which shall contain cd�k� entries with value k. We also get a
copy Pd� of Pd�j ,k� and cd� of cd�k�, which are dynamical
quantities in the sense that these shall be decreased with
every connection and triangle built. Thus for every connec-
tion built we decrease the appropriate entry in the Pd��j ,k�
matrix by 1 and for every triangle built �for every connection
we place, we check for simultaneous neighbors of the in-
volved vertices as any shared neighbor accounts for a new
triangle built� we delete one entry from the triangle list and
decrease cd��k� by 1 for every degree involved.

Then we start to build all triangles in the triangle list one
by one. Let vi be the vertices involved and ki their target
degree.

�1� We draw a random entry k1 from the triangle list and
draw a corresponding vertex v1 with at least one free stub. If
we cannot find such a vertex, we delete all entries with value
k1 from the triangle list and start again.

�2� Now, we choose with uniform probability either �a� an
edge or �b� a stub of vertex v1 out of a list created by omit-
ting all edges for whose end vertex no more triangles can be
built �i.e. cd��k�=0�. In case of �a�, we have chosen an edge
and the end vertex is v2. If we have drawn a stub �b�, we get
a vertex v2 in the same manner as we got vertex v1 with the
further condition Pd��k1 ,k2��0. If it is not possible to find a
k2 fulfilling this condition, we delete all entries with value k1
from the triangle list and start again.

�3� Next, we draw �a� an edge or �b� a stub of vertex v2
from a list like we did in the preceding step for vertex v1, but
with edges inserted into the list only if they are fulfilling the
supplementary condition of Pd��k1 ,k3��0 or vertex v3 being
connected to vertex v1 and vertices v1, v2, and v3 not already
constituting a triangle. Having drawn an edge �a�, we close
the triangle by adding the missing edges and updating all
dynamic quantities. Having drawn a stub �b�, we choose a k3
from the triangle list consistent with k1 and k2. It might hap-
pen that this is not possible and we start again. When we got
a k3, we draw a vertex v3 which either has enough free stubs
or is already connected to vertex v1 or v2, add the missing
edges, and update all dynamic quantities.

Note that in steps 2 and 3 the case of two or three degrees
being the same has to be properly taken into account in order
not to build too many triangles or connections, and that self-
connections are forbidden.

Those steps are repeated until we cannot build any tri-
angles anymore. This point may be defined by a maximum
number of successive tries that did not result in a triangle
being built or until the triangle list is empty.

Afterwards we build the rest of the graph by randomly
choosing edges out of the remaining edge list, which con-
tains Pd��k1 ,k2� entries �k1 ,k2� for all degrees k1, k2. We

BRIEF REPORTS PHYSICAL REVIEW E 77, 017101 �2008�

017101-2



choose randomly two nonidentical vertices with stubs left
and build the edges �if the vertices are not already connected�
and delete the edge we chose from the edge list. We repeat
this until the edge list is empty or we cannot find any vertices
which still lack connections and are not already connected to
each other. If there are edges we could not build �typically
there is no edge left, and very seldomly there are more than
one or two edges left�, we substitute them by randomly con-
necting vertices.

To validate our algorithm, we use two empirical networks
as test cases: �i� the yeast protein-interaction network �PIN�
constituent of 1846 proteins �19� downloaded from Barabá-
si’s web site, and �ii� a subset of the internet on the autono-
mous system �AS� level with 10 515 vertices �snapshot taken
on 03/16/2001� downloaded from http://www.cosin.org/. All
self- and multiple-edges were removed from each network.
To test the validity of the algorithm, one measures the joint
degree distribution P�j ,k� and the degree-dependent cluster-
ing c�k� of the empirical networks and uses these functions
as input for the construction algorithm. The resulting random
network has to display the same joint degree distribution
P�j ,k� �this implies that the degree distribution P�k� is met
as well� and the same degree-dependent clustering c�k� as the
empirical one. A very sensitive test to validate if the corre-
lation structure of the reference and the random network in-
deed match is on the level of the correlation function f�j ,k�,
which varies on a much smaller scale than the joint degree
distribution P�j ,k�. Thus comparing the reference correlation
function f ref�j ,k� with the resulting correlation function
f�j ,k� by use of a correlation coefficient �1 means total
agreement, −1 indicates that the two functions are of oppo-
site sign, and 0 means no correlation among the two func-
tions in comparison� reveals almost complete agreement of
�i� 0.9999�9� and �ii� 0.999�7�. A density plot of the reference
function versus the resulting correlation function in Fig. 1
verifies the excellent agreement of the correlation functions
f�j ,k� and f ref�j ,k�, as the density of points is almost solely
centered at the diagonal. The statistics per curve are 103 re-
alizations for the AS network and 104 for the PIN.

However, the main point of our algorithm is its ability to
conserve the degree-dependent clustering as well. The qual-
ity of agreement is shown in Fig. 2. We show a comparison
between the degree-dependent clustering c�k� of empirical

and generated networks. One can see that the level of clus-
tering in the PIN and AS network is well-reproduced.

IV. CORRELATIONS AND CLUSTERING

We wish not only to be able to reproduce correlations and
clustering in empirical networks, but also to create graphs
from scratch that follow an adjustable correlation pattern ex-
pressed by the average nearest neighbor function knn�k� and a
tunable degree-dependent clustering coefficient c�k�. This
ansatz is complementary to existing rewiring approaches of
given networks �3� to adjust topological measures.

Equation �7� defines ceff�k� as an effective clustering. So
we might consider a graph showing

ceff�k� = � , �8�

with � being a constant between 0 and 1, as an equally
clustered graph throughout all degree classes. Therefore we
may tune the level of clustering by changing �. As we are
able to control degree-degree correlations by use of the al-
gorithm presented in �20�, we can calculate the upper limit
��k� and therefore the degree-dependent clustering c�k� from
P�j ,k� and the target clustering ceff�k� via Eqs. �6� and �7�.
To get a discrete correlation function Pd�j ,k�, we first create
a graph with a given degree distribution P�k� and a correla-
tion structure characterized by a given knn�k� using the
method presented in �20�, and obtain its discrete correlation
function Pd�j ,k�. With Eq. �7� we get c�k� and therefore the
number of triangles per degree k as

cd�k� = c�k�P�k��k − 1�N . �9�

With cd�k�, Pd�j ,k� and the resulting discretized Pd�k� we
have the input needed for our algorithm. To validate the al-
gorithm we tested it for a scale-free graph �P�k��k−	� with
several levels of clustering and several degrees of assortativ-
ity using knn�k��exp
�ln�1+ k

kmin
��
� as an example. The

graph size has been set to N=105 vertices. In order to avoid
intrinsic degree-degree correlations caused by the constraint
of no self- and multiple-connections �17,21�, one has to limit
the maximum degree to a kmax depending on the scale-free
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FIG. 1. �Color online� Plot of the correlation function f�j ,k� of
the random networks generated by the present algorithm vs the
correlation function f ref�j ,k� of the corresponding empirical net-
work. The data is presented as a density plot. Darker red regions
contain a higher density of data points, while brighter red indicates
a lower density. A reference line y=x is drawn as a guide to the eye.
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FIG. 2. �Color online� Degree-dependent clustering coefficient
c�k� vs k of empirical graphs �open, red triangles� compared to their
randomized versions generated by the present algorithm �closed,
blue circles�.
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exponent 	 and the level of �dis-�assortativity controlled by

 �20�.

In Fig. 3 we show the resulting ceff�k�. The statistics per
curve are 100 realizations each, with Pd�j ,k� drawn for each
realization separately. One observes that a level of clustering
close to �=1 is not achievable with our algorithm. Low lev-
els of clustering are very well-reproducible, and medium lev-

els of clustering are very well-reproducible for lower de-
grees, but the higher the degree the more difficult it gets to
cross a certain level of clustering, this level being dependent
on the level of clustering of the lower degree classes. This
behavior is not surprising as in calculating the upper bound
��k� it is assumed that all vertices i with a degree k� smaller
than k have a clustering coefficient ci=1. Thus restrictions on
the level of clustering of low degree vertices imply stronger
restrictions on the level of clustering of high degree vertices.
As changing the assortativity via 
 has only a minor effect
on the effective clustering ceff�k� which can be reached, it
seems that the effects of degree-degree correlations on clus-
tering are well-described by the upper bound ��k�.

V. CONCLUSION

In summary, we have presented an algorithm which gen-
erates networks with an a priori fixed degree-degree corre-
lation structure defined by the joint degree distribution
P�j ,k� and an adjustable level of clustering defined by the
degree-dependent clustering coefficient c�k�. As clustering
and degree-degree correlations are suspected to play an im-
portant role in many dynamical processes taking place on
networks, our algorithm may provide a very useful tool to
systematically research the influences of those topological
properties on different dynamics.
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FIG. 3. Clustering ceff�k�=c�k� /��k� vs k examplified for
N=105, 	=2.8, knn�k� as given in the main text, and �=0, 0.1, 0.2,
0.3, and 0.4 �from bottom to top�, �a� 
=0.2 �assortative�, �b�

=0, and �c� 
=−0.2 �disassortative�.
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